The XENON Dark Matter Experiment

Elena Aprile

Physics Department and Columbia Astrophysics Laboratory

Columbia University

http://www.astro.columbia.edu/~lxe/XENON/

Evidence for dark matter

Rotation curves of spiral galaxies

Gravitational lensing

Hubble image of gravitational lensing around Abell 2218 (NASA)

Weakly Interacting Massive Particles

A WIMP χ is like a massive neutrino...

Produced in the Big Bang

Is very long-lived or stable

Interacts very weakly: can travel through Earth without stopping!

Is predicted in **Supersymmetry** theory of particle physics:

Lightest particle, with a mass ~ 100 x proton mass, is called the neutralino

Has exactly the right properties to be the dark matter!

WIMPs:

Every liter of space: 10-100 WIMPs, moving at 10⁻³ the speed of light

10¹⁵ through a human body each day: only < 10 will interact, the rest is passing through unaffected!

If their interaction is so weak, how can we detect them???

We can make them in accelerators...

We can look at the Sun or go into space...

...or we can go to an underground lab and directly detect WIMPs

Direct Detection:a challenging task

Rate: 10⁻¹ - 10⁻⁵ /kg/day

Nuclear recoil energy: 10 - 100 keV

WIMPs scatter elastically with nuclei:

Rate ~ N $\rho_{\chi}/m_{\chi} < \sigma_{\chi} >$

N = number of target nuclei in detector

 ρ_{γ} = local WIMP density

 $\langle \sigma_{\gamma} \rangle$ = scattering cross section

From the density of dark matter in the galaxy:

Every liter of space: 10-100 WIMPs, moving at 1/1000 the speed of light

=> Less than 1 WIMP/week will collide with an atom in 1kg material

Detectors must effectively discriminate between

Nuclear Recoils (Neutrons, WIMPs)
Electron Recoils (gammas, betas)

World Wide WIMP Search

ORPHEUS

EDELWEISS I/II

Boulby ZEPLIN I/II/III/MAX DRIFT

> CanFranc IGEX ROSEBUD ANAIS ArDM

Gran Sasso

DAMA/LIBRA

CRESST

WARP

XENON

CUORE

The XENON Experiment: Overview

the sensitivity of XENON100 would be $\sigma \sim 2x10^{-45}$ cm².

XENON Dark Matter Goals

XENON10 (2006-2007):

10 kg target ~2 events/10kg/month

Equivalent CDMSII Goal for mass >100 GeV (Current CDMS limit is 10 x above this level)

Important goal of XENON10 underground is to establish performance of dual phase TPC to design optimized XENON100

• XENON100 (2007-2008):

100 kg target ~2 events/100kg/month

• XENON-1T (2008-2012?):

1 ton (10 x 100 kg modules)

10⁻⁴⁶ cm² or ~1 event/1 tonne/month

Dark Matter Data Plotter http://dmtools.brown.edu

Test majority of SUSY models. Discover Dark Matter!

Why Liquid Xenon?

High atomic mass (A ~ 131): favorable for SI case (σ ~ A²)

Odd isotope with large SD enhancement factors (129Xe, 131Xe)

High atomic number (Z=54) and density (3g/cm³) => compact, self-shielding geometry

'Easy' cryogenics at -100 C

No long-lived radioisotopes

Excellent Scintillator (~NaI(TI)) and Efficient Ionizer (W=15.6 eV)

Simultaneous Light and Charge Detection => background discrimination

Very Typical WIMP Signal in Xe

Xe rate enhanced by high A, but low threshold necessary to avoid Form Factor suppression

Principle of Operation

XENON R&D Goals: Summary

+	PM^{2}	Ts	оре	erat	ion	in	LXe

- + > 1 meter \lfloor_e in LXe
- + Operating ~1 kV/cm electric field
- + Electron extraction to gas phase
- + Efficient & Reliable Cryogenic System
- + Nuclear recoil Scintillation Efficiency (10-55 keVr)
- + Nuclear recoil Ionization Efficiency
- + Electron/Nuclear recoil discrimination
- + Kr removal for XENON10
- + Electric Field / Light Collection Simulations
- + Background Simulations
- Materials Screening for XENON10
- + Assembly of XENON10 System
- + Low Activity PMTs and Alternatives Readouts

Achieved

Achieved

Achieved

Achieved

Achieved

Achieved

Achieved

Achieved

1 kg purification achieved

Tools Developed_Done for XENON10

Tools Developed_Done for XENON10

All major components screened

Achieved

Verified Hamamatsu #'s

XENON3/10 Set-Up at Columbia Nevis Lab

Recent Highlights from XENON R&D

LXe Scintillation Efficiency for Nuclear Recoils

- The most important parameter for DM search
- No prior measurement at low energies
 Aprile at al., Phys. Rev. D 72 (2005) 072006

LXe Ionization Efficiency for Nuclear Recoils

- XENON (and other LXe concepts) rely on WIMP identification by simultaneous detection of recoil ionization and scintillation
- No prior information on the ionization yield as a function of energy and applied E-field Aprile et al., PRL (2006), astro-ph/0601552

Development of XENON10 Experiment for Underground Deployment

- Validate Cryogenics, HV, DAQ systems with 6kg prototype
- Demonstrate low energy threshold/discrimination and position reconstruction with neutron and gamma calibration sources

Xe-Recoils Scintillation Efficiency

[Columbia and Yale]

Columbia RARAF 2.4 MeV neutrons

to identify n-recoils

Xe-Recoils Ionization Yield

- 1st Measurement of the charge of low energy recoils in LXe and of the field dependence.
- Charge yield surprisingly higher than expected and with very weak field dependence.

Background discrimination capability

5 keVee energy thres

 γ leakage mainly from edge events

80% NR acceptance $[-1.65\sigma, 1\sigma]$

Gaussian fit

improvement expected by XY position cut with a 3D detector

XENON3: the first 3D sensitive dual phase xenon detector

10 cm Drift

Hamamatsu R8520 PMT:

Compact metal channal: 1 inch square x 3.5 cm

Low background: 3 mBq

Quantum Efficiency: >20% @ 178 nm

why we need 3D sensitivity?

- background events occur mostly near edge (maximum r) and surface (top/bottom) → efficiently reduce them by fiducial volume cut
- electric field lines near the edge are not uniform and straight → edge/surface events mimic nuclear recoils and have to be removed
- unlike WIMPs, neutrons multiple-scatter in the detector → knowing event positions can further reduce backgrounds

XENON3 TPC response to neutrons (252Cf) and gammas (57Co)

Electric Field = 1.0kV/cm

XENON3 Position Reconstruction

Preliminary Algorithms already achieving <1 cm position resolution. Simulations suggest σ_{xy} ~2 mm should be possible at 20 keVr.

[Kaixuan Ni, Columbia]

XENON10 TPC with 14 kg LXe

XENON10 now running above ground at Columbia Nevis Lab

- Testing prior to shipping to LNGS
- 48 PMTs on top, 41 on bottom, 20 cm diameter, 15 cm drift length
- 22 kg needed to fill the TPC. Active volume ~14 kg.

Masaki Yamashita, Columbia]

XENON10 at LNGS: Gran Sasso National Laboratory

XENON10 "Intrinsic" Backgrounds

dru == /keV/kg/day

[Luiz de Viveiros, Brown]

[Joerg Orboeck, U. FLORIDA

Space: Underground Lab Requirements for XENON100-1T

6m x 6m x 7 m (H) experimental room for XENON100 with conventional shielding.

14m x 12m x 7m (H) for ten XENON100 modules with conventional shield. 5 ton crane . Chilled Water. Ventilation. AC-control.

16m x 11m x 15 (H) for XENON1T with a water shield

A LAr active shield is also being considered for XENON1T

Experimental area: Class 2000. Adjacent Detectors Assembly Clean Room: Class 100 C

Radon Background < 100 mBq/m³

Additional underground space ~150 m²: Xe gas handling/purification/cryogenics/electronics/control/analysis

Machine Shop/Mechanical Electrical Engineering support/Radiation Safety/Sources/Chemicals Storage

Electrical Power:

200 kW peak; 100kW average + UPS (20 kW)

Compressed Gases/Cryogens:

Nitrogen/He/Xe Gases; Liquid Nitrogen: 100 I/week for 100 kg module; Kr-removal Purification Plant

Above ground office space:

Collaboration size ~50 physicists. Occupancy 15 people peak/5 people steady

Safety Issues for XENON Underground

- XENON only uses a liquefied noble gas, mechanical equipment, electronics, and a standard or water shield for neutrons. No flammable, toxic, or hazardous chemicals.
- During operation the liquid xenon is kept at about –100 C (P~2 atm) by a mechanical refrigerator. The liquid is contained in a double walled stainless steel cryostat.
- In case of refrigerator failure, or prolonged power failure, LN cooling is automatically initiated. We note that the heat capacity of LXe and the superinsulation of the detector cryostat are such that it will take very long time to evaporate Xe. Risk of asphyxiation by Xe release in the cavern, even in catastrophic scenario is minor.
- In case of failure of LN cooling system, a pressure rise to 3 atm would burst a safety rupture disc, releasing the overpressure into a bladder system to recover the Xe gas.